After successful completion of this course, the student will be able to;

DIFFERENTIAL EQUATIONS

PAPER CODE:1-1-112

- 1. Solve linear Differential Equations
- 2. Convert non exact homogeneous equations to exact differential equations by using Integrating factors.
- 3. Know the methods of finding solutions of differential equations of the first order but not the first degree.
- 4. Solve higher order linear differential equations both homogeneous and non-Homogeneous with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving Differential Equations.

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY PAPER CODE: 1-2-112

- 1. Get the knowledge of planes.
- 2. Basic ideas of line, sphere and cone.
- 3. Understand the properties of planes, lines, spheres and cones.
- 4. Express the problems geometrically and then get the solution.

ABSTRACT ALGEBRA

- 1. Acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- 2. Get the significance of the notation of a normal subgroup.
- 3. Get the behaviour of permutations and operations on them.
- 4. Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.

5. Understand the applications of ring theory in various fields

REAL ANALYSIS

PAPER CODE : 1-4-112

- 1. Get clear idea about the real numbers and real valued functions.
- 2. Obtain the skills of analysing the concepts and applying appropriate methods for testing convergence of a sequence/series.
- 3. Test the continuity and differentiability and Riemann integration of a function.
- 4. Know the geometrical interpretation of mean value theorems.

LINEAR ALGEBRA

PAPER CODE: 1-5-126

- Understand the concepts of vector spaces, subspaces, basis, dimension and their Properties.
- 2. Understand the concepts of linear transformations and their properties.
- 3. Apply Cayley-Hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods.
- 4. Learn the properties of inner product spaces and determine orthogonality.

RING THEORY AND VECTOR CALCULUS

PAPER CODE: 1-5-125

- 1. Acquire the knowledge of basic concepts of Rings and various types of Rings, the Characteristic of an integral domain and field.
- 2. Get the knowledge of Homomorphism and its properties, Fundamental theorem of Homomorphism.
- 3. Attain the skills to compute various integral curves with proper analysis.
- 4. Comprehend the application of Gauss, Stokes and Green's theorems.

LAPLACE TRANSFORMS

- 1. Learn the Laplace transforms of a function by definition and use of a table.
- 2. Observe the inverse Laplace transform of a function.
- 3. Acquire the knowledge of convolution of two functions.

4. Solve the linear differential equations with constant coefficients.

INTEGRAL TRANSFORMS

PAPER CODE: 1-6-112 A

- 1. Gain skills to find the formulae for Fourier Transforms.
- Acquire knowledge of Fourier Transform, inversion, Fourier sine and cosine Transforms.
- 3. Expertise in change of scale property, shifting property, Modulation theorem and Convolution theorem
- 4.. Understand the relation between Fourier and Laplace transforms.

ADVANCED NUMERICAL ANALYSIS

PAPER CODE: 1-6-112 B

- 1. Able to obtain the Numerical methods for approximating the problems of Continuous mathematics.
- 2. Learn the numerical approximations of first and second derivatives of various Functions.
- 3. Execute a variety of numerical algorithms by using suitable technology.
- Differentiate the viability of various approaches, interpolation and approximation, Numerical differentiation and integration and solutions of linear systems.

After successful completion of this course, the student will be able to;

DIFFERENTIAL EQUATIONS

PAPER CODE:1-1-112

- 1. Solve linear Differential Equations
- 2. Convert non exact homogeneous equations to exact differential equations by using Integrating factors.
- 3. Know the methods of finding solutions of differential equations of the first order but not the first degree.
- 4. Solve higher order linear differential equations both homogeneous and non-Homogeneous with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving Differential Equations.

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY PAPER CODE: 1-2-112

- 1. Get the knowledge of planes.
- 2. Basic ideas of line, sphere and cone.
- 3. Understand the properties of planes, lines, spheres and cones.
- 4. Express the problems geometrically and then get the solution.

ABSTRACT ALGEBRA

- 1. Acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- 2. Get the significance of the notation of a normal subgroup.
- 3. Get the behaviour of permutations and operations on them.
- 4. Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- 5. Understand the applications of ring theory in various fields

REAL ANALYSIS

PAPER CODE : 1-4-112

- 1. Get clear idea about the real numbers and real valued functions.
- 2. Obtain the skills of analysing the concepts and applying appropriate methods for testing convergence of a sequence/series.
- 3. Test the continuity and differentiability and Riemann integration of a function.
- 4. Know the geometrical interpretation of mean value theorems.

LINEAR ALGEBRA

PAPER CODE: 1-5-126

- 1. Understand the concepts of vector spaces, subspaces, basis, dimension and their Properties.
- 2. Understand the concepts of linear transformations and their properties.
- 3. Apply Cayley-Hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods.
- 4. Learn the properties of inner product spaces and determine orthogonality.

RING THEORY AND VECTOR CALCULUS

PAPER CODE: 1-5-125

- 1. Acquire the knowledge of basic concepts of Rings and various types of Rings, the Characteristic of an integral domain and field.
- 2. Get the knowledge of Homomorphism and its properties, Fundamental theorem of Homomorphism.
- 3. Attain the skills to compute various integral curves with proper analysis.
- 4. Comprehend the application of Gauss, Stokes and Green's theorems.

LAPLACE TRANSFORMS

- 1. Learn the Laplace transforms of a function by definition and use of a table.
- 2. Observe the inverse Laplace transform of a function.
- 3. Acquire the knowledge of convolution of two functions.
- 4. Solve the linear differential equations with constant coefficients.

INTEGRAL TRANSFORMS

PAPER CODE: 1-6-112 A

- 1. Gain skills to find the formulae for Fourier Transforms.
- Acquire knowledge of Fourier Transform, inversion, Fourier sine and cosine Transforms.
- 3. Expertise in change of scale property, shifting property, Modulation theorem and Convolution theorem
- 4.. Understand the relation between Fourier and Laplace transforms.

ADVANCED NUMERICAL ANALYSIS

PAPER CODE: 1-6-112 B

- 1. Able to obtain the Numerical methods for approximating the problems of Continuous mathematics.
- 2. Learn the numerical approximations of first and second derivatives of various Functions.
- 3. Execute a variety of numerical algorithms by using suitable technology.
- 4. Differentiate the viability of various approaches, interpolation and approximation, Numerical differentiation and integration and solutions of linear systems.

PROJECT WORK

- 1. Communicate and understand Mathematical statements, ideas and results with the Correct use of Mathematical definitions, technology and symbolism.
- 2. Work collaboratively with peers and instructors to acquire mathematical Understanding and solving problems
- 3. Develop oral and written presentation skills.
- 4. Inculcate a taste for research in Mathematics

After successful completion of this course, the student will be able to;

DIFFERENTIAL EQUATIONS

PAPER CODE:1-1-112

- 1. Solve linear Differential Equations
- 2. Convert non exact homogeneous equations to exact differential equations by using integrating factors.
- 3. Know the methods of finding solutions of differential equations of the first order but not the first degree.
- 4. Solve higher order linear differential equations both homogeneous and nonhomogeneous with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving differential equations.

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY PAPER CODE: 1-2-112

- 1. Get the knowledge of planes.
- 2. Basic ideas of line, sphere and cone.
- 3. Understand the properties of planes, lines, spheres and cones.
- 4. Express the problems geometrically and then get the solution.

ABSTRACT ALGEBRA

- 1. Acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- 2. Get the significance of the notation of a normal subgroup.
- 3. Get the behaviour of permutations and operations on them.
- 4. Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- 5. Understand the applications of ring theory in various fields

REAL ANALYSIS

PAPER CODE : 1-4-112

- 1. Get clear idea about the real numbers and real valued functions.
- 2. Obtain the skills of analysing the concepts and applying appropriate methods for testing convergence of a sequence/series.
- 3. Test the continuity and differentiability and Riemann integration of a function.
- 4. Know the geometrical interpretation of mean value theorems.

LINEAR ALGEBRA

PAPER CODE: 1-5-126

- Understand the concepts of vector spaces, subspaces, basis, dimension and their Properties.
- 2. Understand the concepts of linear transformations and their properties.
- 3. Apply Cayley-Hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods.
- 4. Learn the properties of inner product spaces and determine orthogonality.

RING THEORY AND VECTOR CALCULUS PAPER CODE: 1-5-125

- 1. Acquire the knowledge of basic concepts of Rings and various types of Rings, the Characteristic of an integral domain and field.
- 2. Get the knowledge of Homomorphism and its properties, Fundamental theorem of Homomorphism.
- 3. Attain the skills to compute various integral curves with proper analysis.
- 4. Comprehend the application of Gauss, Stokes and Green's theorems.

LAPLACE TRANSFORMS

- 1. Learn the Laplace transforms of a function by definition and use of a table.
- 2. Observe the inverse Laplace transform of a function.
- 3. Acquire the knowledge of convolution of two functions.
- 4. Solve the linear differential equations with constant coefficients.

INTEGRAL TRANSFORMS

PAPER CODE: 1-6-112 A

- 1. Gain skills to find the formulae for Fourier Transforms.
- Acquire knowledge of Fourier Transform, inversion, Fourier sine and cosine Transforms.
- 3. Expertise in change of scale property, shifting property, Modulation theorem and Convolution theorem
- 4.. Understand the relation between Fourier and Laplace transforms.

ADVANCED NUMERICAL ANALYSIS PAPER CODE: 1-6-112 B

- 1. Able to obtain the Numerical methods for approximating the problems of Continuous mathematics.
- 2. Learn the numerical approximations of first and second derivatives of various Functions.
- 3. Execute a variety of numerical algorithms by using suitable technology.
- 4. Differentiate the viability of various approaches, interpolation and approximation, Numerical differentiation and integration and solutions of linear systems.

PROJECT WORK

- 1. Communicate and understand Mathematical statements, ideas and results with the Correct use of Mathematical definitions, technology and symbolism.
- 2. Work collaboratively with peers and instructors to acquire mathematical Understanding and solving problems
- 3. Develop oral and written presentation skills.
- 4. Inculcate a taste for research in Mathematics

After successful completion of this course, the student will be able to;

DIFFERENTIAL EQUATIONS

PAPER CODE:1-1-112

- 1. Solve linear Differential Equations
- 2. Convert non exact homogeneous equations to exact differential equations by using integrating factors.
- 3. Know the methods of finding solutions of differential equations of the first order but not the first degree.
- 4. Solve higher order linear differential equations both homogeneous and non-Homogeneous with constant coefficients.
- 5. Understand the concept and apply appropriate methods for solving Differential Equations.

THREE DIMENSIONAL ANALYTICAL SOLID GEOMETRY PAPER CODE: 1-2-112

- 1. Get the knowledge of planes.
- 2. Basic ideas of line, sphere and cone.
- 3. Understand the properties of planes, lines, spheres and cones.
- 4. Express the problems geometrically and then get the solution.

ABSTRACT ALGEBRA

- 1. Acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- 2. Get the significance of the notation of a normal subgroup.
- 3. Get the behaviour of permutations and operations on them.
- 4. Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- 5. Understand the applications of ring theory in various fields

REAL ANALYSIS

PAPER CODE : 1-4-112

- 1. Get clear idea about the real numbers and real valued functions.
- 2. Obtain the skills of analysing the concepts and applying appropriate methods for testing convergence of a sequence/series.
- 3. Test the continuity and differentiability and Riemann integration of a function.
- 4. Know the geometrical interpretation of mean value theorems.

LINEAR ALGEBRA

PAPER CODE: 1-5-126

- 1. Understand the concepts of vector spaces, subspaces, basis, dimension and their Properties.
- 2. Understand the concepts of linear transformations and their properties.
- 3. Apply Cayley-Hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods.
- 4. Learn the properties of inner product spaces and determine orthogonality.

RING THEORY AND VECTOR CALCULUS

PAPER CODE: 1-5-125

- 1. Acquire the knowledge of basic concepts of Rings and various types of Rings, the Characteristic of an integral domain and field.
- 2. Get the knowledge of Homomorphism and its properties, Fundamental theorem of Homomorphism.
- 3. Attain the skills to compute various integral curves with proper analysis.
- 4. Comprehend the application of Gauss, Stokes and Green's theorems.

LAPLACE TRANSFORMS

- 1. Learn the Laplace transforms of a function by definition and use of a table.
- 2. Observe the inverse Laplace transform of a function.
- 3. Acquire the knowledge of convolution of two functions.
- 4. Solve the linear differential equations with constant coefficients.

INTEGRAL TRANSFORMS

PAPER CODE: 1-6-112 A

- 1. Gain skills to find the formulae for Fourier Transforms.
- Acquire knowledge of Fourier Transform, inversion, Fourier sine and cosine Transforms.
- 3. Expertise in change of scale property, shifting property, Modulation theorem and Convolution theorem
- 4.. Understand the relation between Fourier and Laplace transforms.

ADVANCED NUMERICAL ANALYSIS

PAPER CODE: 1-6-112 B

- 1. Able to obtain the Numerical methods for approximating the problems of Continuous mathematics.
- 2. Learn the numerical approximations of first and second derivatives of various Functions.
- 3. Execute a variety of numerical algorithms by using suitable technology.
- 4. Differentiate the viability of various approaches, interpolation and approximation, Numerical differentiation and integration and solutions of linear systems.

PROJECT WORK

- 1. Communicate and understand Mathematical statements, ideas and results with the Correct use of Mathematical definitions, technology and symbolism.
- 2. Work collaboratively with peers and instructors to acquire mathematical Understanding and solving problems
- 3. Develop oral and written presentation skills.
- 4. Inculcate a taste for research in Mathematics